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Flow in a rapidly rotating, precessing spherical shell is studied with and without an
applied magnetic dipole field in order to model the Earth’s core. The primary response
of the fluid to precessional forcing is a solid body rotation about an axis other than
the rotation axis of the shell. The orientation and energy of that flow is predicted well
by an asymptotic theory. Ekman layers at the boundaries of the shell break down
at critical latitudes and spawn internal shear layers. The limit of small precession
rate is investigated in particular: at zero magnetic field, the strongest shear layers are
inclined at 30◦ with respect to the rotation axis of the shell and erupt at 30◦ latitude
from the inner core. When a magnetic dipole field with its dipole oriented along the
rotation axis of the shell is applied, shear zones develop additional structure and
change position and orientation. At an Elsasser number of 10, most flow structures
tend to align with the rotation axis of the shell.

1. Introduction
It is generally accepted that the origin of the geomagnetic field is a dynamo effect

acting in the electrically conducting fluid in the outer core of the Earth. The driving
mechanism for this flow is commonly believed to be convection, either thermal or
compositional. Bullard (1949) first discussed the Earth’s precession as an alternative
driving force. The energy stored in the precessional motion of the Earth is sufficient
to maintain the geomagnetic field for a long time. It is however unclear whether a
mechanism exists by which this energy can be fed into fluid motion suitable for the
dynamo effect. Kerswell (1996) has derived upper bounds for the energy dissipation
in precessional flows which indicate that enough energy can be transferred from the
precessing mantle to the fluid core in order to meet the energy requirements of the
geodynamo.

Apart from the geophysical application, precession-driven flows have also received
attention from the engineering community working on the dynamics of spinning
spacecrafts containing liquid fuel (Vanyo & Likins 1972).

This paper treats flows with and without an imposed magnetic dipole field in
precessing spherical shells as a model for the fluid motion in the Earth’s core. Two
major simplifications are made in going from the Earth’s core to the model used
here. First, it is assumed that the temperature gradient in the core is adiabatic so that
neither convection nor stable stratification have any influence. Second, the ellipticity
of the core is not taken into account. Pressure forces in addition to viscous friction
couple the fluid to the motion of oblate boundaries. Only viscous forces are available
to transmit the movement of spherical boundaries to the fluid. Irrespective of the
precise form of the container, the Ekman layers break down at ‘critical’ latitudes and
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spawn internal shear layers. These singularities occur at latitudes of ±30◦ in a sphere
(Bondi & Lyttleton 1953; Stewartson & Roberts 1963; Kerswell 1995). Internal shear
layers are a possible source of instability for the flow, but other instability mechanisms
exist in an ellipsoidal casing. The geometry of a spherical shell therefore offers the
opportunity to study viscous effects in isolation.

A series of experiments has investigated the structure of precession-driven flows in
spheroids without an inner core (Malkus 1968; Vanyo et al. 1995). The flow consists
mainly of a constant-vorticity flow with a vorticity vector which deviates from the
rotation axis of the casing. Superimposed on this constant-vorticity flow is a number
of nested cylindrical shear layers with axes roughly parallel with the rotation axis
of the fluid. These shear layers become unstable and the flow eventually becomes
turbulent if the precession rate is large enough. Gans (1970) has built a precessing
cylinder filled with liquid sodium. The experiment was too small to operate as a
dynamo, but an applied magnetic field was amplified by factors of up to 3.

Theoretical work has been concerned with viscous corrections to a basic constant-
vorticity flow which is a solution of the inviscid problem. Stewartson & Roberts (1963),
Roberts & Stewartson (1965) and Busse (1968) treat the case of small Ekman and
Rossby numbers and deduce the orientation and angular velocity of that primary flow.
In addition, Busse (1968) provides a description of the axisymmetric shear layer which
is due to non-linearities in the boundary layers at the critical latitudes. Experiments
have shown that while the shear layer considered by Busse is the strongest, others
exist. Vanyo & Likins (1972) also propose a formula for the orientation and angular
velocity of the primary flow based on empirical estimates of the frictional force exerted
through the Ekman layer on the interior fluid. Hollerbach & Kerswell (1995) study
the spin-over mode which is excited when the rotation axis of a spherical shell is
impulsively tipped and the resulting flow left to decay. Shear layers due to singularities
in the Ekman layers have been observed numerically. The numerical results have been
consistent with the analytical work of Kerswell (1995). The nonlinear response induced
by these shear layers, which are inclined at the characteristic angle of 30o with respect
to the axis of rotation, has been shown to give rise to axisymmetric shear layers,
decaying in time, akin to the structures visualized in experiments.

The present paper deals with the forced (as opposed to decaying) flow in a precessing
spherical shell with an inner core. An inner core has been missing in the experiments
and will be shown to largely dictate the structure of the flow. There is no attempt
to treat instabilities or the dynamo effect, but as a preliminary step the influence of
an imposed magnetic dipole field is studied. The numerical work is divided into two
steps. First, a direct simulation allows quantities not easily accessible in experiments
(§3) to be extracted. In order to unravel the dynamics and reduce the computational
burden, a perturbation approach valid in the limit of small precession rates is adopted
in a second step (§§4 and 5). Only within this framework has it been practical to
include magnetic fields. Modifications of the shear layers due to magnetic effects are
investigated. Conclusions will be drawn in the last section.

2. Mathematical formulation of the problem and numerical methods
We consider a fluid of density ρ, kinematic viscosity ν, and conductivity σ in a

spherical shell of gap width d rotating with angular frequency ω. Units of length, time
and magnetic field strength are chosen as d, 1/ω and (ρµ0)

1/2dω, respectively, with µ0

the vacuum magnetic permeability. The non-dimensional equations for the velocity
u and magnetic field B then read, in a frame of reference attached to the precessing
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sphere (hereafter called the ‘mantle system’),

∂

∂t
u+ (∇× u)× u+ 2(ẑ +Ω)× u = −∇Φ+ Ek∇2u− (Ω× ẑ)× r + (∇× B)× B, (1)

∂

∂t
B + ∇× (B × u) =

Ek

Pm
∇2B. (2)

Hats denote unit vectors. The Ekman number Ek and the magnetic Prandtl number
Pm are given by Ek = ν/d2ω and Pm = µ0σν. Φ stands for a reduced pressure which
is immaterial in what follows because only the curl of (1) will be used. The rotation
of the shell is in the z-direction and Ω is the precession vector. The precession axis Ω̂
forms an angle α (0 < α < 1

2
π) with the z-axis and is time dependent in the mantle

system:

Ω̂ = sin α cos t x̂− sin α sin t ŷ + cos α ẑ. (3)

Retrograde precession corresponds to Ω < 0. The magnetic field considered in this
work is composed of an applied dipole field Bd with the dipole oriented along the
z-axis and an induced magnetic field b, B = Bd + b. The dipole field is given by

Bd = (El Ek/Pm)1/2(riro/r
2)3/2(2 cos θ r̂ + sin θ θ̂) (4)

in spherical polar coordinates (r, θ, ϕ) with El the Elsasser number. Normalization is
such that 1

2

∫
(B2

dr+B
2
dθ)dV/V = El Ek/Pm, where the integral extends over the volume

V of the shell. ri and ro denote the inner and outer radii of the shell. Throughout this
paper, ro − ri = 1 and ri/ro = 0.35 as appropriate for the Earth’s core.

The boundary conditions require that u = 0 at r = ri, ro and that B matches a
vacuum field at the inner and outer boundaries. The assumption that the inner core
is a vacuum is of course contrary to geophysical fact. But simulations with these
boundary conditions allow the differences between the convex inner and concave
outer boundary to be discerned, which are quite important even in the non-magnetic
case (Kerswell 1995).

The solenoidal fields can be written in terms of poloidal and toroidal scalars

u = ∇× ∇× (vr̂) + ∇× (wr̂), b = ∇× ∇× (gr̂) + ∇× (hr̂), (5)

which are themselves decomposed into radial and angular parts:

v = r

∞∑
l=1

l∑
m=−l

V m
l (r, t)Pm

l (cos θ)eimϕ,

g =

∞∑
l=1

l∑
m=−l

Gml (r, t)Pm
l (cos θ)eimϕ,

w = r2

∞∑
l=1

l∑
m=−l

Wm
l (r, t)Pm

l (cos θ)eimϕ,

h =

∞∑
l=1

l∑
m=−l

Hm
l (r, t)Pm

l (cos θ)eimϕ,


(6)

where Pm
l (cos θ) denotes associated Legendre functions. Operating with r̂ · ∇× and

r̂ · ∇× ∇× on (1) and with r̂ · and r̂ · ∇× on (2) one obtains

∂

∂t
DlV

m
l − EkD2

l V
m
l =

r

l(l + 1)
[r̂ · ∇× ∇× {Ω′ × u− (∇× b)× (Bd + b)}]ml , (7a)

∂

∂t
Wm

l − Ek
(
∂2

∂r2
+

4

r

∂

∂r
+

2− l(l + 1)

r2

)
Wm

l

= − 1

l(l + 1)
[r̂ · ∇× {Ω′ × u− (∇× b)× (Bd + b)}]ml + [f]ml , (7b)
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∂

∂t
Gml − Ek

Pm

(
∂2

∂r2
− l(l + 1)

r2

)
Gml = − r2

l(l + 1)
[r̂ · ∇× {(Bd + b)× u}]ml , (7c)

∂

∂t
Hm
l − Ek

Pm

(
∂2

∂r2
− l(l + 1)

r2

)
Hm
l = − r2

l(l + 1)
[r̂ · ∇× ∇× {(Bd + b)× u}]ml , (7d)

with

Ω′ = ∇×u+2(ẑ+Ω), Dl =
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2
, f = Ω sin α [iP 1

1 ei(ϕ+t)+2iP−1
1 e−i(ϕ+t)].

[ ]ml denotes the l, m-component of the quantity in the square bracket. These equations
need to be solved subject to the boundary conditions

Vm
l =

∂Vm
l

∂r
= Wm

l = 0 at r = ri, ro, (8a)

Hm
l =

(
∂

∂r
− l+ 1

ri

)
Gml = 0 at r = ri, Hm

l =

(
∂

∂r
+
l

ro

)
Gml = 0 at r = ro. (8b)

The detailed structure of the numerical code used in this work need not be elaborated
here since it has evolved from a program previously used and extensively tested for
the simulation of thermal convection (Tilgner 1996; Tilgner & Busse 1997) and the
kinematic dynamo problem (Tilgner 1997). For additional validation, the decay rates
obtained with a direct eigenvalue method by Hollerbach & Kerswell (1995) have been
reproduced with the time integration method to within a few 10−3. The code is a
pseudo-spectral method which uses Chebychev collocation in the radial direction to
complete the spatial discretization of the original equations and all nonlinear products
are computed in direct space. The only difference with respect to previous versions
resides in the time step. The nonlinear terms, the diffusion terms and the forcing f
are treated with second-order Adams–Bashforth, implicit Euler and Crank–Nicholson
steps, respectively. The rationale behind this time step and issues of resolution will
be discussed in a separate publication (Tilgner 1999).

The direct simulations described in the next section required resolutions of up to
129 Chebychev polynomials and spherical harmonics of degree up to 128. Occasional
comparative runs used yet higher resolutions. The scope of these simulations was
severely restricted by available computer resources and the magnetic field could not
be included. For this reason, an expansion valid for small precession rates similar
to the one used by Hollerbach & Kerswell (1995) has been adopted. This expansion
conveniently separates the influence of different terms and allows more insight than
the direct simulation.

For the Earth, α = 23.5◦ and Ω ≈ −10−7. It is therefore natural to consider
equations (1), (2) for small Ω and u and to obtain at first order the velocity u1,
magnetic field b1 and reduced pressure Φ1:

∂

∂t
u1 + 2ẑ × u1 = −∇Φ1 + Ek∇2u1 − (Ω× ẑ)× r + (∇× b1)× Bd, (9a)

∂

∂t
b1 + (u1 · ∇)Bd − (Bd · ∇)u1 =

Ek

Pm
∇2b1. (9b)

Having computed u1 and b1 it is possible to proceed to the next order and find
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nonlinear responses u0 and b0:

∂

∂t
u0+(∇×u1+2Ω)×u1+2ẑ×u0 = −∇Φ0+Ek∇2u0+(∇×b1)×b1+(∇×b0)×Bd, (10a)

∂

∂t
b0 + ∇× (b1 × u1 + Bd × u0) =

Ek

Pm
∇2b0. (10b)

At the boundaries, u1 and u0 satisfy no-slip conditions, and b1 and b0 match external
potential fields; u1, b1, u0 and b0 are all solenoidal. The forcing term −(Ω × ẑ) × r
is purely m = 1. The indices are justified by the fact that u1 and b1 then also have
only m = 1 components, whereas u0 and b0 have non-vanishing amplitudes at m = 0.
There are also contributions to u0 and b0 at m = 1 and 2, but these have not been
investigated in any detail in the present work because experimental pictures reveal
only axisymmetric shear layers.

It is a straightforward matter to extend the discretization described above for the
original equations (1), (2) to the perturbation equations (9), (10). The resolutions used
in the computations are included in table 1.

Time integration has been continued for at least 250 revolutions of the shell for
the direct simulations. Using the expansion for low precession rates, runs lasted 1000
revolutions for the non-magnetic cases and 40 revolutions at the highest Elsasser num-
ber. All runs eventually led to flows whose sole time dependence consists in a global
rotation following the movement of Ω̂ in the mantle frame. Only these final states will
be considered. Transient oscillations seemed to always disappear and are certainly less
than 10−3 in fractional amplitude should they persist. Equations (1), (2) are invariant
under the transformation r → −r, u → −u. All solutions which have been obtained
are antisymmetric with respect to inversion at the origin. This symmetry was always
recovered after random perturbations had been added and time integration continued.

3. Direct simulations
This section begins with a discussion of theoretical ideas which will help to organize

the presentation of the numerical results. Only flows in the absence of a magnetic field
will be considered. Theoretical work is generally easier in a frame of reference rotating
about the axis of precession with angular velocity Ω in which the axes of precession

and rotation of the shell are stationary. In this frame, Cartesian basis vectors î, ĵ and

k̂ are chosen such that Ω = Ωk̂ and ẑ = sin α î + cos α k̂. The boundary conditions
for u in this frame are u = ẑ × r at r = ri, ro and the equation of motion becomes

∂

∂t
u+ (∇× u)× u+ 2Ω× u = −∇Φ+ Ek∇2u. (11)

A solution to this equation is a solid-body rotation ωF × r with ωF determined by the
interaction of the interior flow with the Ekman layers which form in order to satisfy
the boundary conditions. A simple idea used by Vanyo & Likins (1972) consists
in subsuming the viscous effects in a frictional force per unit area proportional to
(ẑ − ωF )× r acting at the boundaries. In dimensional units, the prefactor is given by
ρν/h, where h stands for the thickness of the boundary layers which will have to be
chosen empirically. Using this approximation and operating with

∫
dV r× on (11)

yields

d

dt
ωF = ωF ×Ω+ γ(ẑ − ωF ), γ = 5

ν

ωdh

r4
o + r4

i

r5
o − r5

i

. (12)
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Figure 1. Deviations from a solid-body rotation as a function of radius r
(ri = 0.35/0.65, ro = 1/0.65): (a) magnitude of the local deviation ∆ω(r) of the angular veloc-
ity from the average, divided by 〈ω〉 = |〈ω〉|: (b) angle ∆Θ between ω(r) and 〈ω〉 in degrees.
α = 23.5◦ for all three curves. The other parameters are Ek = 10−4, Ω = −10−3 (solid line),
Ek = 10−4, Ω = −0.2 (dot-dashed line), and Ek = 10−5, Ω = −10−3 (dashed line).

In the stationary state, ωF is given by

ωF =
γ2

γ2 + Ω2
sin α î − γΩ

γ2 + Ω2
sin α ĵ + cos α k̂. (13)

Independently of the choice of h one finds for the stationary state ωF · ẑ = ω2
F and

(ωF · ĵ)Ω < 0. The latter inequality shows that viewed in an inertial frame, the axis of
the fluid lags behind the axis of the shell in the precessional motion. At infinitesimal

Ω, ωF − ẑ is orthogonal to Ω and ẑ. As |Ω| is increased, ωF gradually aligns with k̂.
A calculation by Busse (1968) determined ωF for a spheroid from an expansion in

Ekman and Rossby numbers. This calculation is considerably more involved and leads
qualitatively to the same conclusions as the above model, but free of any adjustable
parameter like h. In particular, ωF is determined by

ωF

ω2
F

= ẑ +
Aẑ × (Ω× ẑ) + B(ẑ ×Ω)

A2 + B2
, (14)

with A = 0.259(Ek/ωF )1/2/ro + Ω · ẑ and B = 2.62(Ek ωF )1/2/ro for a spherical
boundary of radius ro (see also Roberts & Stewartson 1965). The z-component of
(14) reproduces the equation ωF · ẑ = ω2

F already obtained above. Equation (14)
strictly speaking holds for a full sphere. However, equation (12) shows that the torque
exerted by the inner core on the fluid in a shell with ri/ro = 0.35 is only 2% of the
total frictional torque, so that (14) can be reasonably applied to the present situation.

We now turn to a comparison with numerical results. Three series of runs have been
performed: (i) Ek = 10−4, α = 23.5◦ with −10−3 > Ω > −0.2, (ii)Ek = 10−4, α = 90◦
with −10−3 > Ω > −10−2 and (iii) Ek = 10−5, α = 23.5◦ with Ω = −10−3 and
Ω = −3 × 10−3. Precession is thus retrograde in all cases. Two points are included
(Ek = 10−5, Ω = −3 × 10−3 and Ek = 10−4, α = 90◦, Ω = −10−2) for which equation
(1) has been time stepped without the term (∇ × u) × u. This term is unimportant
for a comparison with the above theory, as could be verified by comparing results
obtained with and without the nonlinear term for other parameter sets. However, it
is not possible to judge the stability of the computed flows in these two cases.

Figure 1 quantifies the deviations from a solid-body rotation. For this purpose, the
rotation vector ω(r) of the fluid on a spherical surface with radius r is computed in
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Figure 2. Polar plot showing the orientation of the average rotation of the fluid in a reference frame
in which the axes of precession and rotation of the shell are stationary. The thin circles are located at
10◦, 20◦ and 30◦ from the north pole. The thick lines show the locus of the directions of the rotation
axis of the fluid predicted by (14) for α = 90◦ (left-hand line) and α = 23.5◦ (right-hand line),
the latter ending at the top right of the figure at the position of the precession axis. ‘Retrograde’
corresponds to ‘clockwise’ in this figure. The symbols indicate Ek = 10−4, α = 23.5◦ (circles),
Ek = 10−5, α = 23.5◦ (squares) and Ek = 10−4, α = 90◦ (diamonds). The values of Ω can be deduced
from figure 3 where more data for the same runs are shown; the points close to the pole are for
small |Ω|. Near to every data point obtained from direct simulation is another symbol showing the
direction calculated with (14) for the same parameter set: crosses belong to circles, × to squares
and stars to diamonds.

the mantle system:

ω(r) = −2Re{W 1
1 (r)}x̂+ 2Im{W 1

1 (r)}ŷ +W 0
1 (r)ẑ. (15)

Re{} and Im{} denote the real and imaginary parts of the quantity in curly brackets.
An average rotation is then defined by 〈ω〉 = 1

V

∫
ω(r)dV , where V is the volume of

the shell. Figure 1(a) shows the deviation of the rotation rate ∆ω = |ω(r)| − |〈ω〉|,
figure 1(b) shows the variation of the angle between local and average rotation as a
function of radius, cos ∆θ = ω(r) · 〈ω〉(|ω(r)| |〈ω〉|)−1. Even well outside the viscous
layers, ∆ω/|〈ω〉| always exceeds 8% at some radius. The angle ∆θ reaches 5◦ in all
cases. Reducing the Ekman number barely reduces these deviations.

We can next transform 〈ω〉 into the coordinate system spanned by î, ĵ and k̂ and
compare 〈ω〉+ ẑ with ωF . Figure 2 shows a polar diagram in which the directions of
〈ω〉+ ẑ and ωF are given. This plot is the analogue of figure 3 in Vanyo et al. (1995)
in which the position of the rotation axis of the fluid is deduced from the motion of
tracer particles and from the orientation of shear layers. A quantitative comparison is
not possible because the experiment was at lower Ek and in an ellipsoidal container.
The locus of the directions of 〈ω〉+ ẑ when varying Ω depends on α but not on Ek
according to (14). This is verified well by the numerical results. Differences between
the predicted and computed directions are of the order of the deviations ∆θ within
which a rotation vector can be defined from the numerical data.

Figure 3 compares the kinetic energy of the flow in the mantle frame with the
predicted value 1

2

∫
(ωF − ẑ)2dV . The agreement is fair and the fractional error would
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Figure 3. Kinetic energy Ekin of the flow in the mantle frame as a function of the (retrograde)
precession rate Ω. The symbols indicate Ek = 10−4, α = 23.5◦ (circles), Ek = 10−5, α = 23.5◦
(squares) and Ek = 10−4, α = 90◦ (diamonds). The solid lines show the kinetic energies deduced
from (14).

Figure 4. Cylindrical projection of contour lines of the radial component of vorticity at mid-shell
after the solid-body rotation 〈ω〉× r has been subtracted. Ek = 10−4, α = 23.5◦ and Ω = −6× 10−2.
At the time at which the snapshot is taken, the precession axis lies at colatitude θ = 23.5◦ and
longitude ϕ = −130◦ (ϕ = 0 is in the middle of the figure). The axis of rotation of the fluid points
at θ = 23◦ and ϕ = −147◦ (θ = 111◦ and ϕ = −147◦ for the fluid rotation relative to the shell).

appear even smaller in the î, ĵ , k̂ frame because most of the rotational energy is
subtracted out in transforming to the mantle frame, where deviations from solid-
body rotation are emphasized. The agreement also improves with decreasing Ek.

It is natural to inquire what the structures of the flow superimposed on the solid-
body rotation look like. It is known from the experiments that shear layers occur
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Ek Pm El nr L
E1,tor × 10−4

(Ω sin α)2

E1,pol × 10−2

(Ω sin α)2

Eb,tor

(Ω sin α)2

Eb,pol

(Ω sin α)2

E0,tor × 10−7

(Ω sin α)4

E0,pol × 10−6

(Ω sin α)4

10−4 – 0 65 64 1.99 1.92 – – 4.12 3.67
10−5 – 0 129 128 14.0 5.50 – – 172 192

3×10−6 – 0 129 256 25.9 5.86 – – 490 600
10−4 0.1 0.1 65 64 1.99 1.83 1.83 6.59 4.05 4.22
10−4 0.1 1 65 64 1.54 1.38 17.3 45.5 2.61 2.53
10−4 0.1 10 129 64 0.417 0.795 31.2 112 0.31 0.44
10−4 1 0.1 65 64 1.91 1.81 1.89 3.37 3.69 3.82
10−4 1 1 65 64 1.80 1.77 9.15 18.2 3.12 5.10
10−4 1 10 129 64 1.10 1.41 42.9 83.0 1.35 2.74
10−5 1 0.1 65 128 13.6 5.4 3.88 7.04 159 222
10−5 1 1 129 128 19.1 8.48 37.0 60.4 353 910

Table 1. Kinetic energies E1 and E0 contained in the m = 1 and m = 0 modes, respectively, as well
as the energy Eb contained in the m = 1 modes of the magnetic field for solutions of equations (9),
(10) at Ekman number Ek, Prandtl number Pm and Elsasser number El computed with resolutions
of nr radial collocation points and spherical harmonics of degree up to L. Energies for toroidal and
poloidal components are given separately and indicated by the subscripts pol and tor. All energies
are rescaled with the appropriate power of the driving force Ω sin α. Errors are less than 5% on all
quantities. The energy in m = 2 modes is less than a third of E0 except at Ek = 3× 10−6 where it
is about one half the energy contained in the m = 0 components.

which are axisymmetric about the rotation axis of the fluid. In order to render such
layers visible in the numerical data, figure 4 shows a cylindrical projection of the
spherical surface at mid-shell on which the radial component of vorticity is plotted
after the solid-body contribution has been removed. While a very weak shear layer
roughly symmetric about the rotation axis of the fluid appears at about 60◦ from
that axis (such a layer takes a wavy form in the cylindrical projection), the picture is
dominated by non-axisymmetric features. This trend should reverse at lower Ek (see
§5).

None of the flow structures showed any sign of instability in the parameter range
investigated. It is seen from figure 3 that the flow is unlikely to become unstable at yet
larger |Ω| at Ek = 10−4, α = 23.5◦ because the kinetic energy has saturated. Reducing
Ek does not increase that saturation energy but increases the Reynolds number. The
numerical simulation of precession-driven flows which do become unstable will be a
future challenge. Only the basic flow is treated in this paper. Instead of dissecting
its structure with cumbersome three-dimensional visualization, it was found more
illuminating to follow the perturbation approach as reported in the next two sections.

4. Non-axisymmetric components of magnetohydrodynamic flows
This section deals with the solution of equations (9a,b) in the presence of an

imposed magnetic dipole field. The parameter range covered in this study is 10−4 >
Ek > 3×10−6, 0 6 El 6 10, 0.1 6 Pm 6 1. Table 1 lists the parameters actually used.

4.1. Flow structures

Figure 5 shows flow structures after the solid-body rotation 〈ω〉 × r as defined in the
previous section has been subtracted. The remaining components of the meridional
flow reach their maximum in the meridional plane containing 〈ω〉, whereas the
azimuthal component becomes maximum in the meridional plane perpendicular to
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Figure 5. Visualization of u1 and b1 (equations (9a,b)) in meridional planes. Solid (dashed) contours
indicate positive (negative) values. (a) Ek = 10−5, no magnetic field is applied; (b,c) Ek = 10−5,
Pm = 1, El = 1; (a,b) show (from left to right) the r-, θ- and ϕ-components of u1, (c) shows from
left to right the r-, θ- and ϕ-components of b1. u1r , u1θ, b1r and b1θ are given in the plane containing
〈ω〉, which points to the right. u1ϕ and b1ϕ are shown in a plane such that 〈ω〉 points out of the
figure.

the previous one. These planes have been chosen for the cuts shown in figure 5
because the shear zones are most visible there. In the non-magnetic case (figure 5a),
the critical latitudes which generate shear layers inclined at 30◦ with respect to the
axis of rotation are clearly visible. As could be expected, these circulations are very
similar to the spin-over mode obtained by Hollerbach & Kerswell (1995).

Figure 5(b) shows the influence of a magnetic field at El = 1. The most important
effect is visible at the inner core, where the point from which shear layers erupt moves
towards the equator, but the characteristic angle of inclination for interior shear layers
remains the same. The shear zones tend to split into several layers emanating from the
equatorial region. This is most clearly seen from figure 5(c) where the magnetic field
is shown. Due to the (Bd · ∇)u1 term in (9b), the magnetic field probes the derivatives
of the velocity field and is particularly sensitive to additional structure; b1 is mostly
confined to shear layers and spreads with increasing Ek and decreasing Pm.

Figure 6 shows the dependence on Ek, El and Pm. The radial velocity component
gives a sufficiently general impression of the flow. At Ek = 10−4, all features are of
course more smeared out than at Ek = 10−5. At the highest El one observes that the
flow structures tend to align with the z-axis. The lower Pm accentuates the effect of
the magnetic field: in figure 6, the structure at Pm = 0.1, El = 0.1 superficially looks
like the flow at Pm = 1, El = 1, and the pictures for Pm = 0.1, El = 1 and Pm = 1,
El = 10 resemble each other, too.

The remainder of this subsection attempts to interpret some of these results in
terms of a simple model. Imposing a magnetic field of strength (El Ek/Pm)1/2 on
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Figure 6. Radial component of u1 in the meridional plane containing 〈ω〉.
All plots are for Ek = 10−4, (a) Pm = 1, (b) 0.1, and El as indicated.

a flow of typical velocity v0 varying on length and time scales of order 1 yields an
induced magnetic field of order of magnitude (El Ek/Pm)1/2v0 if the diffusion term in
the induction equation is small. The magnetic term in the Navier–Stokes equation is
therefore of the order of El Ek/Pm v0 which is negligible compared with the Coriolis
force in all cases of interest. The form of the primary flow, i.e. the solid-body rotation,
is thus hardly affected by the magnetic field.

These estimates are different inside the shear layers. It looks paradoxical at first
that the boundary layer eruptions and their associated shear layers are displaced
towards the equator, a region of higher magnetic field strength. In order to gain
some understanding of the dynamics, consider a flow in which the interior motion
is assumed to be a solid-body rotation ω × r with ω = sin t x̂ + cos t ŷ, and the
flow near the boundaries is determined by the boundary layer versions of (9a,b). Let
us focus on the case Pm � 1, relevant for the Earth. Anticipating boundary layer
thicknesses of Ek1/2 or less, the magnetic diffusion time across the layers will be Pm
or less, i.e. small compared to 1. The time derivative term in the induction equation
can thus be neglected as the magnetic field can quickly adjust to the variation of the
velocity field occurring on the time scale O(1). The equations for the boundary layer
quantities vθ, vϕ, b̃θ, b̃ϕ become with the usual approximations

∂

∂t

(
vθ
vϕ

)
+ 2 cos θ

( −vϕ
vθ

)
= Ek

∂2

∂z′2

(
vθ
vϕ

)
+ n̂ · Bd ∂

∂z′

(
b̃θ
b̃ϕ

)
, (16a)

−n̂ · Bd ∂
∂z′

(
vθ
vϕ

)
=
Ek

Pm

∂2

∂z′2

(
b̃θ
b̃ϕ

)
, (16b)

where z′ denotes distance from the boundary along the normal vector n̂ pointing
into the fluid. Equation (16b) can be integrated over z′ with the boundary condition
that all quantities approach 0 as z′ tends towards infinity; b̃θ and b̃ϕ may then be
eliminated from (16a) to yield

∂

∂t

(
vθ
vϕ

)
+ 2 cos θ

( −vϕ
vθ

)
=

(
Ek

∂2

∂z′2
− Pm

Ek
(n̂ · Bd)2

)(
vθ
vϕ

)
. (17)

Note that only the normal component of Bd enters, which acts like an additional
dissipation. Equation (17) needs to be solved for (vθ, vϕ) with a time dependence in eit
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Figure 7. The normal component of velocity vn at the edge of the boundary layer at the inner core
computed according to (21) at ϕ + t = 1

2
π and multiplied with (El/Ek)1/2 for convenience, as a

function of colatitude θ in degrees for El = 10−4 (solid line), 3× 10−3 (long dashed), 5× 10−3 (short
dashed) and 10−2 (dot dashed).

and subject to the boundary conditions

vθ = −R Re{ei(ϕ+t)}, vϕ = −R cos θ Re{iei(ϕ+t)} for z′ = 0, (18a)

vθ = vϕ = 0 for z′ → ∞, (18b)

where R denotes the radius of the boundary under consideration. The solution to this
problem is

vθ = − 1
2
R[(1− cos θ)Re{e−α+ζei(ϕ+t)}+ (1 + cos θ)Re{e−α−ζei(ϕ+t)}], (19a)

vϕ = − 1
2
R[(1− cos θ)Im{e−α+ζei(ϕ+t)} − (1 + cos θ)Im{e−α−ζei(ϕ+t)}], (19b)

with ζ = Ek−1/2z′ and

α± =

(
i(1± 2 cos θ) +

Pm

Ek
(n̂ · Bd)2

)1/2

=

(
i(1± 2 cos θ) + 4El

(
riro

R2

)3

cos2 θ

)1/2

,

(20)

the root with positive real part being understood. Here, one can check that the
approximations made above are consistent. The boundary layer thicknesses are indeed
of the order Ek−1/2 at El = 0 and decrease with increasing El (which explains why
higher El requires higher radial resolution in numerical computations, see table 1).
The normal velocity vn is obtained from the equation of continuity. At the surface of
the boundary layer (ζ →∞), vn is given by

vn(ζ = ∞) = Ek1/2 1− cos 2θ

2 sin θ
Re

{(
1

α+

− 1

α−

)
ei(ϕ+t)

}
. (21)

The solution (19a,b) is in agreement with numerical results near the inner boundary
for z′ up to about 2Ek−1/2 for El = 0. At the outer boundary, impinging shear layers
originating from the inner core complicate the picture. As vθ and vϕ become small for
large ζ, they are eventually dominated by the interior corrections to the solid-body
rotation 〈ω〉 × r at large enough ζ. The structure of the flow at z′ a few multiples
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of Ek−1/2 can thus be quite different from the boundary layer flow. Figure 7 shows
for instance vn(ζ = ∞) as a function of θ at ϕ + t = 1

2
π for various El at the inner

boundary. It is seen that a change of sign occurs at around θ = 60◦ for small El which
turns into a singularity for El = 0. However, as figure 6 shows, the radial velocity just
outside the boundary layer has an extremum (rather than a root) at this colatitude
in this particular meridional plane for Ek = 10−4. This is not true any more at the
inner core for Ek = 10−5 (figure 5).

So far there is no rigorous connection between the boundary layer flow and an
internal shear layer. However, the change of sign in vn(ζ = ∞) signals a special
latitude and is certainly indicative of large shear. We will adopt that change of sign as
a marker for the latitude at which internal shear layers are spawned. Full visualization
of the boundary layer solution also leads to the conclusion that the flow pattern in
the boundary layer is moving towards the equator with increasing El. The origin of
internal shear layers should therefore shift towards the equator, too, simply because
that origin follows the entire boundary layer flow pattern. This shift towards the
equator occurs in the numerical simulation only at a higher El than predicted by (21),
the discrepancy being larger for larger Pm. But remember that Pm� 1 was assumed
in the derivation of (21). According to (20) the same shift also occurs at the outer
boundary but requires an El larger by a factor (ro/ri)

6 to produce the same effect.
This is again compatible with the numerical data. Note that the entire derivation has
been independent of the boundary conditions on b in the limit Pm � 1. The same
behaviour is thus expected for a conducting inner core at small Pm.

The region around θ = 60◦ remains distinguished at high El because a maximum
of vn(ζ = ∞) occurs there. This might be related to the shear zones which reappear
for El = 10 at the inner core at θ = 60◦. To complete the analysis one would
have to calculate the corrections to the interior flow and determine the structure of
the internal shear zones analytically. This appears to be quite difficult (even in the
non-magnetic case) especially near the equator.

4.2. Energies

Table 1 gives further quantitative data obtained from the solutions of equations
(9a,b). The poloidal and toroidal contributions to the kinetic and magnetic energies
(integrated over the volume of the shell) are listed separately. It is seen that reducing
the Ekman number increases all energies. This is expected since the impact of the
diffusion terms is then lowered. At the same time, the ratio of poloidal to toroidal
kinetic energies decreases due to less efficient Ekman pumping. An increase of El can
either increase or decrease the kinetic energy. A stronger magnetic field has a damping
effect on one hand, on the other hand it decreases the boundary layer thickness (as
can be deduced from (20)) and leads to a stronger coupling between the fluid and the
boundary, hence to more efficient energy transfer.

5. Axisymmetric components of magnetohydrodynamic flows
This section deals with the solutions of equations (10a,b). Figure 8 shows the

structure of u0 for various parameter sets. A solid-body contribution has again been
subtracted for clarity, which was in all cases a retrograde rotation about the z-axis. One
recognizes features familiar from experiments (Malkus 1968) or theory (Busse 1968):
moving radially inwards starting from the equatorial region at the outer boundary,
one crosses successively zones of retrograde, prograde and again retrograde velocity,
which are superimposed on the general retrograde circulation. The shear layers in that
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Figure 8. Meridional circulation and zonal component of u0 (equation (10a)). Continuous lines
indicate clockwise rotation in the meridional circulation. The zonal flow is shown for Ek = 10−4,
El = 0 (a, left), Ek = 10−5, El = 0 (a, middle), Ek = 3 × 10−6, El = 0 (a, right) and Ek = 10−5,
Pm = 1, El = 1 (b, right). All the plots in (c) are for Ek = 10−4, Pm = 0.1 but with El = 0.1
(left), 1 (middle) and 10 (right). The remaining panels show meridional circulations for the same
parameters as for the panels directly above: Ek = 10−4, El = 0 (b, left), Ek = 10−5, El = 0 (b,
middle); Ek = 10−4, Pm = 0.1 for all plots in (d) with El = 0.1 (left), 1 (middle) and 10 (right).

region are however not exactly located at the distance ro cos 30◦ from the z-axis, at
which they would connect the critical latitudes at the outer boundary. The strongest
shear layers are those originating from the inner boundary. Figure 4 gives a hint of
the existence of such shear layers in a much more nonlinear regime in which the
perturbation approach is not directly applicable.

The non-magnetic results can also be compared with the figures given by Hollerbach
& Kerswell (1995) who solved (10a) for Ω = 0 and zero magnetic field using for u1 the
velocity of the decaying spin-over mode. The forcing term has then a time dependence
e−2λt where λ is the decay rate of the spin-over mode. Hollerbach & Kerswell looked
for the particular solution of (10a) which also decays like e−2λt. However, this solution
could not be obtained by time integration because the homogeneous part of (10a)
has solutions decaying more slowly which dominate the time-stepped solution at any
instant if time integration is started from the steady-state flow as initial condition.
There are striking differences between the solution of Hollerbach & Kerswell (1995)
and the steady-state flows of figure 8 as far as the ϕ-component is concerned (where
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the nested cylindrical shear layers seen in the decaying solution have essentially
disappeared), but the meridional circulations are surprisingly similar.

When the magnetic field is added, the structures in u0 follow the same general
trend as those in u1 by which they are driven: the characteristic angle of 30o loses
its prominence; the z-axis becomes a distinguished direction in the bulk of the shell
where the flow structures appear to become independent of the inner core.

The poloidal and toroidal energies of u0 are also given in table 1. The meridional
component is considerably weaker than the ϕ-component. At equal Ω sin α, the
ratio E0/E1 rapidly increases with decreasing Ek. Axisymmetric shear layers should
therefore become more visible than in figure 4 with decreasing Ek.

6. Conclusion and outlook
Experiments attempting to model the Earth’s outer liquid core have shown that

shear layers appear in precessing flows which become unstable at large enough
precession rates. It has been surmised that the resulting flow may lead to a dynamo
effect. The present work investigates what happens to these shear layers in the presence
of an inner core and a magnetic dipole field. For a ratio of inner to outer radius of
0.35, the inner core has a negligible effect on the primary flow. The torque exerted
by the inner core on the fluid is so small that the orientation and magnitude of the
rotation vector of the fluid can be predicted with a formula originally derived for
a full spheroid. The structure of the flow superimposed on the primary solid-body
rotation is dominated by shear layers originating from the inner core. An applied
magnetic dipole field modifies the boundary layers and also the position and structure
of the internal shear layers. With increasing magnetic field strength, the characteristic
angle of 30◦ loses its significance. The results on magnetohydrodynamic flows have
been obtained at the lowest order for small precession rates. It should be noted that
in this limit in the absence of a magnetic field, critical latitudes are always at 60◦ to
the axis of the shell, whereas in a full theory they occur at 60◦ to the rotation axis
of the fluid. Similarly, the orientation of shear layers in the magnetohydrodynamic
flows is likely to be modified at higher precession rates. The limit of slow precession
is of importance in the geophysical context, however.

A direct comparison with existing experiments is not possible at present because
none has included an inner core. Nested axisymmetric shear layers which dominate
the flow in full spheroids give way to axisymmetric conical shear layers in most of
the volume of the spherical shell used in the computations. Only comparatively weak
axisymmetric shear layers have been observed in the direct simulations because the
Ekman number was still much larger than those encountered in experiments. Malkus
(1971) gives an approximate criterion for the onset of instability of the shear layers
in his experiments, which is (1 − ω2

F )Ek−1/2 > 2 in the notation of §3. The direct
simulations in §3 reached (1−ω2

F )Ek−1/2 ≈ 10, yet showed no sign of instability. This
might be due to the difference in flow structures, to uncertainties in the determination
of ωF which needs to be accurate to a few percent, or to too high an Ekman number
for Malkus’ criterion to be valid. It will be the subject of future work to numerically
reach situations in which the flow becomes unstable and to investigate the dynamics of
a precession-driven dynamo. The computations with an imposed magnetic field of §§4
and 5 lead one to expect different regimes for weak and strong field dynamos because
different shear layers dominate at different Elsasser and magnetic Prandtl numbers.

The author wishes to acknowledge F. H. Busse for helpful discussions.
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